
J .  Fluid Mech. (1985), vol. 159, p p .  303-321 

Printed in &eat Britain 

303 

Optimal discharge profiles for sudden contaminant 
releases in steady, uniform open-channel flow 

By N. C. DAISH 
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, 

Silver Street, Cambridge CB3 9EW 

(Received 24 August 1984 and in revised form 30 April 1985) 

The effect of varying the initial concentration distribution is investigated for a sudden 
contaminant release in a uniform straight channel. Taking the optimal choice to be 
that which maximizes the variance of the contaminant cloud far downstream, it is 
found that, unless the topography is very unusual, the largest variance can be 
generated by splitting the contaminant into two parts, placing the larger part at the 
bank where the channel bed slopes most gently, and the remainder near to where the 
channel is deepest. This procedure significantly reduces peak concentrations far 
downstream when compared with making the entire release at any single point across 
the flow. Even at distancesas large as six times thee-folding distance for cross-sectional 
mixing, the splitting of the discharge is shown to reduce the peak concentrations by 
a third. 

1. Introduction 
One of the ways in which shear-dispersion studies are useful to the problem of 

environmental pollution is in assessing the relative merit of different discharge 
conditions for a contaminant release. The goal of such studies should be to choose 
the source distribution that minimizes the effect of the release in one or more ways. 
For example, by a suitable choice of initial conditions, we might try to reduce the 
peak concentrations far downstream of the release as much as possible, or minimize 
the residence time of the contaminant in the flow. 

For flows that are essentially steady in time, such as the mean flow in a river in 
its pretidal stages, the time of release is irrelevant, so that we should aim to optimize 
the spatial distribution. This presents a choice between two main types of contaminant 
discharge: sudden and continuous. The optimal siting of a continuous point release 
in a river has been investigated by Smith (1982a), who finds the best site to be near 
to the middle of such a channel ; this keeps the contaminant plume formed away from 
the banks for as long as possible. 

The other main type of release - the sudden discharge - results in a contaminant 
cloud, rather than a plume, which is swept downstream by the mean flow. Such a 
release would be appropriate to industrial users of a river with relatively small 
amounts of waste to dispose of. In this case, although an observer near to the point 
of release will experience a region of very high concentrations, particularly if the 
discharge is strongly localized, this will be a transitory region - quite a different 
situation from the steady-discharge case. We shall therefore focus attention on the 
behaviour of the cloud a long distance from the release, when it has had time to spread 
across the flow, and attempt to minimize the peak concentrations there, for example 
at a water intake some distance downstream of the user. 
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I n  the sections that follow, we shall arrive a t  a simple way of choosing the optimal 
source distribution for such a sudden contaminant release in a straight uniform 
channel with arbitrary depth profile. If we take 'optimal' to  mean maximizing the 
variance of the concentration distribution far downstream, then we show that unless 
the channel has a very unusual topography the optimal choice for the distribution 
is to  take just two point sources. We find that the first, more heavily weighted, source 
should be placed a t  the bank with the shallowest water adjacent to it, with the second 
sited near to  the deepest part of the channel. This procedure significantly reduces 
the peak concentrations far downstream when compared with those produced by a 
single point discharge at one of the banks (as advocated by Smith 1981). The choice 
of split source is also more robust to variations in the depth profile than the single 
source: the best site for a single point discharge need not be a t  one of the banks if 
there is a favourable location in the channel interior, namely another region of shallow 
water (a possibility overlooked by Smith 1981), whereas the two-source procedure 
will be unaffected by such a feature unless i t  is exceptionally extensive. 

2. Asymptotic form of the concentration: pipe flow 
The general features of the evolution of a contaminant cloud far downstream of 

its release have been known for some time. The first to  describe the most important 
characteristics that  emerge after sufficient time has elapsed for the cloud to become 
fairly evenly distributed across the flow was Taylor (1953, 1954 a, b) .  He showed, 
in the case of laminar Poiseuille flow, that in a frame moving with the cross-sectionally 
averaged velocity U a contaminant cloud is eventually stationary, as characterized 
by its mass centroid, and the cross-sectional mean concentration C evolves as per a 
one-dimensional diffusion equation with an augmented diffusion coefficient D which 
can greatly exceed the molecular diffusivity K (Taylor 1953). He found the same 
features in the evolution of a contaminant cloud in turbulent pipe flow, where now 
the longitudinal turbulent diffusivity K~ can be small compared with the coefficient D, 
which itself depends on the transverse turbulent diffusivity K~ (Taylor 1954~) .  

Aris (1956) also investigated dispersion in laminar pipe flow, calculating the 
asymptotic form of the spatial moments of the concentration {C(P)}~-~ rather than 
c itself. If (x, y, z )  are Cartesian coordinates in a frame moving with the bulk velocity 
u, with the x-axis occupying the centreline of the pipe, the pth moment c(P)(y, z, t )  
- 

is defined by m 

@(y, Z, t )  = xPc(x, y, Z, t )  dx, (2.1) I_, 
where t is the time. The functions {C(P)}~=~ then describe the distribution of 
contaminant in a particular flow filament centred on (y, z) = constant. In  particular, 
do) gives the total mass of contaminant in the filament, c(l)/c(O) gives the position 
of its centre of gravity and d2) is related to  the variance uz through 

The cross-sectionally averaged moments {C'p'(t)}gm0 give the corresponding in- 
formation about the whole cloud. 

Starting at p = 0, Aris found that do) tends to  a constant far downstream, so that 
eventually there is equal mass in each flow filament. He confirmed that the centre 
of gravity of the cloud is asymptotically stationary, displaced a distance X from the 
origin of the moving frame, i.e. 

P/P - x. (2.3) 
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(Note that the asymptotic limit we are considering is, strictly speaking, that oft --f co ; 
however, the asymptotic results that follow will all apply after a time of order b 2 / q  
where b is a lengthscale for cross-sectional mixing and B is a characteristic value of 
the diffusion coefficient across the flow.) The first moment itself becomes a function 

(2.4) 
of y and z only, 

C(l)/C(O) - X+g(y, z), 

so that the centres of gravity of the filaments are distributed according to the 
function g. Aris observes that g also appears in Taylor’s (19543) expression for the 

asymptotic concentration : ac 
c - C-g(y, 4 

(Taylor 19543, equation (6)). Thusg gives the shape of the concentration profile within 
a particular cross-section as well, and is therefore referred to as the ‘shape function ’. 

Finally, the second moment - and therefore the variance - grows with time as t ;  
its asymptotic form is 

t+2g@)(y,z)+const, 

its asvmntotic form is 

where the constant depends on the discharge conditions, but gc2) is independent of 
the initial concentration distribution. The time-dependence of dn) is in agreement with 
the well-known property of the one-dimensional diffusion equation with. a constant 
diffusion coefficient that the variance of the solution grows linearly with time (Fischer 
et al. 1979). The additional contribution to the growth rate is identical with the 
augmented diffusion coefficient, or dispersion coefficient D, found by Taylor (1953). 
Clearly, it  can be much larger than K ;  we shall henceforth neglect K (or K1 in the 
turbulent case) in favour of D.  h i s  shows that it is related to the shape function g 
through 

D = ( u - U ) g .  (2.7 1 

3. Asymptotic form of the concentration: open-channel flow 
The results of $2 have been extended to the depth-averaged turbulent flow in an 

open channel, relevant to rivers and other ‘natural streams’, by Smith. Such a 
channel will be the underlying configuration in the rest of this paper, and is sketched 
in figure 1. It is straight and longitudinally uniform, with Cartesian coordinates 
(z, y, z )  aligned along and across the flow as indicated. It has breadth B and maximum 
depth H, with a depth profile h(y)  which vanishes at each bank. 

A t  t = 0 a sudden contaminant release is made at z = 0 ,  with non-uniformities 
across the flow described by q(y) .  If ) I ~ ~ l l  is the depth-averaged vertical eddy 
diffusivity, the cloud from such a release will become vertically well-mixed after a 
distance of order ZP/ 11 K~ 11 - typically about 40 water-depths - so we can treat i t  as 
vertically uniform for the purposes of our calculations. The initial condition for the 

(3.1) 
concentration is therefore 

c = q(y )  8(z) at t = 0. 

Furthermore, because the channel is uniform, we can adopt the depth-averaged form 
of the dependent variables u and K~ throughout, so that these are now the 
depth-averaged mean turbulent velocity and transverse turbulent diffusivity re- 
spectively, and cross-sectionally averaged quantities become depth-weighted 
averages : 

l B  P = Jo h ( y ) f ( y )  dy, (3.2) 

where A is the cross-sectional area of the channel. 
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FIGURE 1. Sketch of configuration : uniform straight channel. 

u and K~ are assumed to vary with y as powers of the local depth h : this guarantees 
that the velocity is greatest and the transverse mixing most vigorous in the deepest 
parts of the channel, in accordance with observation, as well as providing a 
convenient representation of these quantities. Throughout the rest of this paper we 
employ the specific choice of a velocity profile that varies as hi and a turbulent 
diffusivity that varies as hi, so that 

(3.3) 

(Smith 1981, equation (6.5)), although the effects of using different power laws on 
some of the results have also been investigated by Daish (1985). Whichever 
turbulence parametrization is adopted, explicit asymptotic expressions for the 
moments of the concentration can be derived in terms of q and the solutions of certain 
ordinary differential equations, as shown by Smith (1981, 1982b). 

As t+ 00 the zeroth moment tends to the constant value 9, whilst the asymptotic 
centroid displacement X is given by 

x = m/q, (3.4) 

the function g(y) satisfying . -  

d(hK 9) = h(E-u), 
dY QY 

( 3 . 5 ~ )  

(3.5b) ds 
dY 

with hK - = 0 on y = 0, B,  

- 
and g = o  (3.5c) 

(Smith 1981). g is, in fact, simply the shape function of $2. 

that 
The form of the second moment can also be made more precise. Smith (1982 b )  finds 

where D = (u-U)q (3.7) 
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(cf. (2 .7) )  and g @ )  satisfies 

with 

d dy ( h ~ ~  3) = h{ (u - U) g - (u -E)  g } ,  

dg(2) 
h K 2 -  = 0 on y = 0, B, 

dY 

( 3 . 8 ~ )  

(3.8b)  

and p = 0. ( 3 . 8 ~ )  

This means that the asymptotic variance of the cloud in the moving frame, C2, is 
given by 

4. A closer look at the variance, and how t o  influence it 
Rewriting (3 .9)  in the form 

c2 - 2Dt+ v, 
so that V is given by 

v = - - g z + - -  - 2- (;y - , (4 .2)  
9 

we see that Z2 falls into two distinct parts. Each arises from an interaction between 
the shear and transverse diffusion, but reflects a different aspect of the dispersion 
process. Far downstream, concentrations vary little in a cross-section, and the 
longitudinal stretching effect of the shear and the transverse mixing are essentially 
in balance, acting together to increase C2 steadily with time. We can therefore think 
of the first, time-dependent part as the contribution of the asymptotic regime itself 
to the variance, and, as we have already seen, it is independent of the initial 
concentration distribution. In  contrast, the second part is time-independent, em- 
bodying the overall effect of the early stages of the dispersion on the variance, when 
large variations in the concentration exist across the channel rather than some 
equilibrium state. We shall call this second contribution the ‘ discharge variance ’. 

Figure 2 shows the general form of the variance as time evolves. The two elements 
of the variance can clearly be seen: the eventual linear growth rate after a time of 
order B2/Zz has elapsed (corresponding to a distance downstream of, typically, 100 
channel breadths), but with the precise asymptote depending on the initial conditions 
through the discharge variance V .  

Equations (3.9), (4.1) and (4.2) are all defined relative to the moving frame. For 
a fixed observer at position x downstream, say at the site of a water intake, it is 
natural to take t = t ,  = x/E, the time of arrival based on U, in these expressions. 
However, it is then necessary to adjust the discharge variance by an amount 2 D X / 5 ,  
because the centroid displacement makes the cloud appear to arrive a time X / U  earlier 
than expected. Thus we write the observed asymptotic variance Zi in the form 

z; - 2Dt,+ v,, (4 .3)  

V, = V-2DX/E.  (4.4) 

where the ‘adjusted discharge variance’ V, (abbreviated to a.d.v.) is given by 

(Note that this is the negative of the ‘adjusted deficit variance’ employed by Smith 
(1981).) 
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Time 

FIGURE 2. Schematic diagram of the growth of the variance of a contaminant cloud with time, 
in a frame moving with the bulk velocity Z. 

The dichotomy in the contributions to (4.1) or (4.3) means that we can influence 
the variance, and therefore asymptotic concentration levels, in two different ways. 
First, the dispersion-coefficient term can be made larger by simply relocating the 
discharge further upstream, so that the time taken to arrive a t  a particular 
observation point is increased. Secondly, and more usefully, we can try to choose the 
initial distribution of contaminant, as characterized by q, to exploit the channel’s 
non-uniformities as fully as possible, and so make V, as large as possible. It is this 
aspect of the optimization of that we shall be concerned with in the rest of this 
paper. 

To see how this might be achieved, consider the topography of a typical natural 
channel such as that in figure 1. It has a zone of slow-moving shallow water near one 
or both of its banks, and a region of relatively fast-flowing and deep water around 
the middle. These two zones have quite different mixing characteristics: the shallow 
water has a lot of shear and little transverse mixing, whilst the deep water has only 
a small amount of shear together with rapid mixing across the flow. The shallow water 
has the additional advantage that it is slow-moving, so that there is the greatest 
possible time for the shear to act before the cloud reaches an observer. These remarks 
suggest that a discharge should be weighted towards the shallow part of a channel 
if greatest advantage is to be taken of these features in the early stages of the mixing. 

5. Single-point discharge 
In this section we briefly consider making the entire release at one point (as Smith 

(1981) did) and the effect of varying the position of that point, before asking whether 
there is any advantage in splitting this source up into a multipoint discharge in $6. 
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A single point source at y = ys can be represented by means of a Dirac delta 

iiA 
function, taking 

Q(Y) = hS(Y--YS). 

The resulting expressions for the centroid displacement and the adjusted discharge 
variance are simple in form and only involve the auxiliary functions g and g @ )  at the 
discharge point. The centroid displacement for such a discharge profile varies with 
ys as the shape function g, i.e. 

and the a.d.v. is easily seen to be 
(5.2) 

V, = -2i7+4ys), (5.3) 

x = 9(Ys), 

- 

(5.4) 
ug 

From the considerations of $4, we would expect 1 - and therefore V, - to have a 
maximum when the discharge is located in shallow water, especially since the point 
releme that we are considering represents the most extreme weighting of q possible. 
Such a region of shallow water is invariably provided by the channel near to one or 
both of its banks. Moving a point source away from this favourable location would 
enable the cloud to mix into the deeper central parts more rapidly, giving less of it 
a long time to be sheared out. Thus, provided the channel bed slopes sufficiently gently 
there, i.e. provided there is enough shallow water accessible to the cloud as it starts 
to disperse, one of the banks should afford a maximum in V,. Conversely, a bank where 
the channel bed slopes sufficiently steeply will provide a bad choice of site, as moving 
a discharge away from such a bank will allow the cloud to mix into the advantageous 
shallow regions sooner, yielding a local minimum in V,. This is also true of the deep 
parts of the channel interior, where we might expect a global minimum in the a.d.v. 

Various examples of channels illustrating these and other general trends are shown 
in figure 3. They are all intended to represent a more ‘normal’ type of channel, with 
a variety of possible forms. The a.d.v. is shown as a function of ys for each profile, 
and it is clear that the bank with the most shallow water accessible to i t  is the best 
site to choose. Figures 3 (a, d) illustrate two of the simplest depth profiles commonly 
employed, namely with a symmetric triangular and trapezoidal cross-section 
respectively. They exhibit the characteristic minimum in V, for a release in the deep 
parts of the channel, rising to a maximum at the banks. Figures 3(a-c) show how 
the more gently sloping side is favoured in a simple triangular channel: as the 
asymmetry of the depth profile increases, so does the disparity in the a.d.v. at the 
two sides. When there are two shallow sides, the shallower is the better of the two, 
and the central regions of the channel become relatively unimportant, as illustrated 
in figures 3(e-g), whilst figure 3(h)  shows that a wider stretch with the same slope 
will win. 

Each graph of V,(y,) in figure 3 has been normalized with 2. This quantity is an 
intrinsic property of any particular channel, as well as a natural scale for V,, since 
the a.d.v. takes the value -2$ when the discharge is uniform (q = 1). This means 
that can be interpreted aa a time for cross-sectional mixing, t,, so that the time 
t ,  when the dispersion coefficient and a.d.v. contributions become comparable in size 

where l(Y) = 29‘a’(Y) - 2 YdY) - MY))*. 

is given by 
IV, t, = ---t 2 2  m’ (5.5) 
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FIQURE 3(a-d).  For description see facing page. 

i.e. a certain number of ‘mixing times’. So the fact that the numbers on the V, axes 
in figure 3 are frequently large shows that the influence of the a.d.v. extends over 
a considerable distance downstream after mixing across the flow has occurred. 
Furthermore, the influence itself is a significant one, as the a.d.v. is usually positive 
at the banks, so that the total variance is increased beyond its value given simply 
by the dispersion coefficient, and usually significantly so over its value for a uniform 
discharge. 

Figure 4 shows what can happen if there is an alternative region of shallow water 
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FIQURE 3. Adjusted discharge variance for some normal depth profiles. The crosses indicate 
optimal positions for two sources, and the numbers above their weightings. 

present in the channel, in this case a rise at its centre. As it gets progressively higher, 
the a.d.v. becomes more and more peaked for a release at the centre of the channel. 
The shallowest bank (y = B) is initially the optimal site, as in figure 4(u) ,  but this 
is eventually replaced by the centre as the rise grows to within +H of the surface. Note 
that the banks are local maxima in figure 4(c), even though neither corresponds to 
the overall maximum for Vo; this shows the condition given by Smith (1981) for a 
bank to be a local extremum of the a.d.v. (sufficiently shallow slope to the channel 
bed) does not always give the best choice of site. 
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~ Q I J R E  4. Adjusted discharge variance for a sequence of channels with an increasingly prominent 
rise at y = fB. Depth of channel at this point is (a) iH, (a) tH, (c) fH and (d )  f H .  

In all cases, it should be noted that there is a price to pay when the discharge is 
localized in the shallow water, namely very high concentrations near to the release. 
The shallower the water, the higher these initial concentrations will be, since it is clear 
that c cc h-l in the vicinity of the discharge. 

6. Multipoint discharge 
The results of $6 amply demonstrate that a prudent choice of q can have a 

significant effect on the state of a contaminant cloud in the asymptotic regime. We 
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now consider whether subdividing the single-point release into a number of distinct 
parts can significantly further increase the variance, and find that it can do in a 
surprisingly simple way. 

Generalizing to a combination of n point discharges located at yr, ye, . . . , yn with 
non-negative weightings al, a,, . . . , a,, the profile q becomes 

where 

so that (6.1) corresponds to the same total amount of contaminant as (5.1). 
The centroid displacement now becomes a weighted average of values of g: 

whilst the a.d.v. can be written 

L(yl, ye, ..., yn, al, a,, ..., a,) being defined by 

v, =-2?+L, 

n 
L = 5-1 Z a5E5-{~la5g5)’. 

where 9, = g(y,), 1, = 4YJ ( 6 . 6 ~ )  

and E, = g;” + 1, (6.6b) 

with 2 as in (5.3). 
We must therefore maximize L subject to (6.2); introducing the Lagrange 

multiplier A, this means maximizing 

subject to 
n 

5-1 
z a ,= l  

( 6 . 7 ~ )  

(6.7b) 

with a 5 2 0  ( j = 1 , 2  ,..., n)  ( 6 . 7 ~ )  

and O < y 5 Q B  ( j = 1 , 2  ,..., n).  (6.7d) 

We have already seen (when n = 1) that the optimal solution can lie on the boundary 
of the domain occupied by our set of variables: one release site is usually at y = 0 
or B. We must therefore exercise care in using differentiation techniques to find the 
solution of (6.7). 

If there are more than two distinct sources in this solution, then only two can have 
y = 0 or B; so suppose two of the {y,} are fixed for the moment - say y1 and y, - but 
that the other sites and all the weightings are undetermined, with none of the {a5} 
equal to zero or one. Then, upon varying the remaining variables, we must satisfy 
the equations 

a,(E;-&) = 0 ( j  = 3,  ..., n)  ( 6 . 8 ~ )  

and Ej-(A+mj)  = 0 ( j  = 1, ..., n), (6.8b) 

where ( 6 . 8 ~ )  
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and 9; = 9'(YjL E; = E'(Yj ) ,  (6 .84  

subject to the same constraints appearing in (6.7). 

the definition of L, together with (6.7) and (6.8), we find 
Then, without solving (6.8a, b), the extremal value of L can be written down: using 

L = ip2+A. (6.9) 

Moreover, A and p can be eliminated in favour of say y1 and y2 (provided a,, a2 + 0 
or l ) ,  since 

(6.10) E2 91 - El 92 A =  
91 - 9 2  

and (6.11) 

Thus the optimal value of L can be expressed entirely in terms of y1 and y2. The 
other equations (namely (6.8a), and (6 .8b)  for j = 3, ..., n )  can be satisfied if we take 
the remaining {yj} to be either y1 or y2, choosing whichever is not at a boundary - 
we shall see a posteriori that this is possible. We therefore conclude that we need only 
two sources to optimize V,, at least one of which must be in the interior of the channel. 
Henceforth we restrict attention to the two-source problem. 

In looking for the optimal positions and weightings of these two sources, it  should 
be noted that if we expand L about the weightings (a:, a,*) satisfying (6.8b), with y1 
and y2 fixed, L is non-decreasing with respect to variations in a1 and a2. The optimal 
weightings are therefore given by 

(6.12a, b )  

Bearing in mind that a single site should usually be at one of the banks, we expect 
one part of a split discharge to remain at that good bank. Numerical evaluations of 
V, were carried out for a wide range of piecewise-linear depth profiles, allowing V, 
to be calculated exactly. In  each case once g and I had been found, a, and a2 were 
set to their optimal values (6.12) for each (yl,y2), and all points in the allowed range 
searched through to find the discharge sites with non-negative weightings giving the 
maximum value of V,. These calculations revealed that one part of the discharge 
should indeed be made a t  the best bank for a single point source, whilst the other 
part is best released in the channel interior, near to where the flow is greatest. These 
findings justify the remarks made after (6.10) and (6.11). 

So, choosing y1 = 0 (or B), y2 can be found from (6.8a, b): 

E' E l - E 2  A=- 
9;; 91-92 

(6.13) 

Equations (6.9)-(6.11) will then give L, and hence V,. y1 and y2 must, of course, 
satisfy the criterion 

I4 - 121 (91- q J 2  (6.14) 

to ensure that the weightings lie in the range 0-1. 



Discharge projiles for contaminant release in channels 315 

7. Example: triangular channel 
In this section we give a simple example, for which all the above results can be 

obtained analytically, in order to illustrate these ideas. Consider a channel whose 
depth-profile is an isosceles triangle (see figure 3a); we may then make direct 
comparisons with Smith (1981, $7) .  For this symmetric depth profile we take the 
channel to  have breadth 2B (rather than B as we have done in previous sections) and 
to occupy 0 < y < 2B; its symmetry also means that we need only consider one half, 
say 0 < y < B. 

Integrating ( 3 . 5 ~ )  and ( 3 . 8 ~ )  for g and g(2), using the hi and hj power laws for u 
and K~ respectively, we find after some algebra that g and 1 are given by 

g =  (T)i(-14+30Yi-15Y), 1 4? 

- 
g2 1 = -{419- lOO(24Y-28 f i + 9  Y2)}, 
31 

( 7 . 1 ~ )  

(7.lb) 

and therefore - 

31 
E = - g2 (3163- 11760 Yi+ 16080 Y - 9800 fi +2250 P) ( 7 . 1 ~ )  

where Y = y/B (see Smith 1981, equations (7.7),  (7.10) and (7.11)). (Writing these 
expressions in terms of 2 renders them independent of the precise choice of coefficient 
in the power laws for u and K ~ ;  in fact, 2 /31  = (2/77175) B4'2E2/Kg.) 

The best site for a single discharge in this half of the channel is a t  y = 0, so, taking 
y1 = 0,  (6.13) for possible & = y2/B becomes 

Yi(Y~-l)(225Y,-940Yi+1020) = 0. (7.2) 

The last factor on the left-hand side has complex roots, so (reverting to y1 and y2) 
the real roots of (7.2) are y2 = 0 and y2 = B. 

The first solution simply corresponds to  combining both parts a t  y = 0, as 
considered by Smith (1981); for this choice of y2 the value of the a.d.v. is 

(7.3) 
9" v, = 357-. 
31 

However, if we select y2 = B, (6.9) and (7.1) yield 
- 
g2 - 914.34- 

115207 2 V o = - - -  
126 31 31 (7.4) 

This is an increase in the size of the contribution of the a.d.v. by a factor of over 
two. 

Finally, (6.12) tells us that the weightings should be 

53 
a2 = - 

126 
73 
126 

a, = -, (7.5) 

so that the discharge is more heavily weighted in favour of the good bank, as 
anticipated. 

Figure 5 shows a contour plot of V o ( y l , y 2 , a ~ , a ~ )  for this triangular channel. 
Because a1 and a2 have been set to  their optimal values (6.12), they may be non-positive 
for certain choices of (yl, y2), so that only the area between the dotted line and the 
boundary is relevant. It is clear that  there is a rapid decrease in V, as y1 is moved 
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FIGURE 5. Contour plot of the adjusted discharge variance for a symmetric triangular channel, as 
a function of the discharge positions. Only the region between the dotted line and the boundary 
is physically relevant. 

away from the bank, whilst there is again a decrease in 4, though a much gentler 
one, as y2 is moved away from the centreline. 

If we now keep y1 and y2 fixed at their optimal positions and allow a1 and a2 to 
vary between 0 and 1 (subject to the constraint (6.2)), the a.d.v. varies with a,, say, 

according to - 

(7.6) 
V, = (3150a~-3650a,+ 143)-. g2 

31 

This is plotted in figure 6, and shows a significant reduction in V, when there is little 
of one or other source, but a peak at  our optimal choice of a split source. 

The conclusions of this section have all been based on the power-law parametri- 
zation (3.3) of the turbulent mean velocity and transverse diffusivity profiles. It can 
be shown (see Daish 1985) that the same conclusions arise for the triangular channel 
when we allow different powers of h in the formulation. Specifically, if u varies as 
hr and K~ as h2-r (which follows from the assumption that K~ scales with depth in the 
same way as the vertical eddy viscosity), then, provided 0 < r < 4 (which includes 
all possible cases of interest) : 

(i) either bank is the best choice for a single discharge ; 
(ii) a split discharge should be made with one part (more heavily weighted) at a 

(iii) the a.d.v. for two optimally sited sources is always larger than for a single 
bank, and the remainder in the middle of the channel; 

release at a bank. 
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FIGURE 6. Adjusted discharge variance for a symmetric triangular channel as a function of the 
weighting of the source at the bank when the two sources are optimally located. 

8. Mean-concentration profiles 
Having found the optimal location and weighting5 for the discharges, what does 

this mean in terms of concentrations ? The fact that the second part of the discharge 
should go where the flow is fast means that the two parts will initially separate quite 
rapidly, hence automatically increasing the variance. This disparity in their behaviour 
suggests that there may not be any significant interaction between them (a feature 
potentially masked by a consideration of the variance alone), and that it will simply 
appear to an observer that two disjoint clouds are passing by. 

We may obtain an idea of how the cross-sectionally averaged concentration evolves 
by considering a simple one-term Gaussian approximation for each part. In a frame 
moving with the bulk velocity T i ,  a fist approximation to the mean concentration 
c of a contaminant cloud due to a point discharge made at  y = y s  is given by - 

where Z2 is the variance of the cloud in the moving frame, as detailed in (3.9). We 
take the two parts of the release to evolve independently, and the concentration due 
to both to be the linear superposition of the two Gaussian profiles that emerge far 
downstream. We also assume that the asymptotic separation of the two centroids 
has been attained; this is consistent with the use of a Gaussian profile for C. Insofar 
as we eventually obtain two blobs of contaminant separated by a fixed distance along 
the flow, this situation has been discussed by Chatwin (1972, $3). 

11-2 



318 N .  C. Daish 

We saw earlier that the mean concentration will evolve as per a one-dimensional 
diffusion equation once the deviations from the mean are small. Smith (1979) 
calculated an e-folding time t,  for the decay of these deviations, which may be written 
as 

(Smith 1981, equation (7.13)). ( t ,  will be of the same order of magnitude as t,, the 
timescale for mixing across the flow in @.) This means that, after n e-folding times 
have elapsed, the total varianoe due to a point source at  y = ys, Z!,n, will be given 

L!,# = (3.08n+7.90)? when y, = 0, (8.3a) 

and ,T!,# = (3.08n-4.30)$ when ys = B. (8.3b) 

So, if Fl , , ( s ; y , )  denotes the mean concentration at t 3 nt, due to one source, the 
mean-concentration field due to the optimal split source will be 

(8.4) 

i.e. a linear combination of the profiles for the best and worst choice of site for a single 
point source. 

The concentration profile (8.4) for the split source together with that for a single 
point discharge at  the best and worst sites are plotted in figure 7 at (a) 3 and (b) 6 
e-folding times after release. At t 3t, the split source has achieved a reduction in 
peak concentration over the single aource ah a bank, and both are significantly better 
than the single source at the middle of the channel. By t = 6t,, the split souroe is 
forming itself into a single Gaussian-like profile whose peak ooncentration is only 
of that for the best single souroe (which is a greater relative reduction then between 
the best and worst single-souroe sites). If we were to follow the evolution of these 
profiles still further, we would eventually be in the true ‘Taylor regime’, where the 
2Dt part of has become dominant and V, may be neglected altogether, Note, 
however, that the dispersion coeffioient aontribution to  the variance is still significantly 
smaller than the a.d.v. at the later of the two times, so these reductions may genuinely 
be attributed to the choice ofdisoharge conditions. (In fact, from (7.4) and (8.3), we 
see that over 9 e-folding times would have to elapse before the two contributions are 
equal in magnitude.) 

t, = 7.9(p)i/U (8.2) 

by 

- 
c = ~Cl,rs(Z;O)+~al,n(Z;B), 

9. The general depth profile: discusdon and conclusions 
The calculations of $7 were also made, numerically, for a wide variety of depth 

profiles, some of  which were shown in figures 3 and 4. They concluded that, unless 
the channel topography particularly unusual, the same procedure is applicable 
to a general depth profile. The bank which has the most shallow water accessible to 
it (i.e. the one where the channel bed slopes most gently) i s  the site to choose for the 
greater part of the discharge, whilst the other part of the release should be made near 
to the deepest part of the channel. The croases on the channel depth profiles in figures 
3 and 4 denote these optimal positions, and the numbers above refer to their 
respective weightings. Figure 4 also demonstrates the greater robustness of the double 
aource to changes in the ahannel topography, In fact, the oentral peak would have 
to rise to within H/100 of the surfwe before both the optimal looations lie in the 
channel interior. This w&s found for many other examples for which neither bank 
offered the best sib.  
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FIGURE 7. Mean-concentration profiles for a symmetric triangular channel at different times after 
release, in a frame moving with the bulk velocity ?i. In each case, the profiles are those produced 
by ( i )  the optimal split source, (ii) a single source at a bank and (iii) a single source at the centre 
of the channel. 

The numerical studies also showed that, in general, the a.d.v. is markedly improved 
when a single source is split into two appropriately placed and weighted parts, 88 
we saw for the symmetric triangular channel. The increase was generally by a factor 
of 1.5 or more for all 'normal' depth profiles, so we would expect similar relative 
reductions in the peak concentrations to those in figure 7. Exceptions to this were 
channels for which a bank is not best, such as those with a rise in their interior; for 
these the cloud from a single source is able to disperse in two regions of shallow water 
instead of just one, so the a.d.v. produced by our procedure is comparable to this, 
and little advantage is gained by splitting the source. 
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The effect of this improvement in the a.d.v. by our method can be interpreted in 
two ways. Since i t  now takes longer for the dispersion-coefficient contribution to 
match that of the discharge conditions in magnitude (as D is the same whichever 
initial conditions we take), we can say that concentrations are reduced over a longer 
stretch downstream. Equation (5.5) shows that the region of influence increases in 
proportion to  the increase in the a.d.v. Alternatively, we can say that they are 
further reduced over a certain part of the channel, compared to their values for a 
single point release. 

How might these conclusions be modified for a longitudinally varying channel 2 
Smith (1984) has calculated the variance of a contaminant cloud in such a non-uniform 
flow, and shows that it has the same general form as in the uniform case. However, 
the extra degrees of freedom render the corresponding optimal discharge analysis 
intractable. To home extent, the benefits of a split discharge are likely to be reduced 
by the secondary motions induced by any bends present, but i t  should still be the 
case that the same exploitation of the fast- and slow-moving parts of the flow will 
improve the dispersion and reduce peak concentrations in a general non-uniform 
channel. 

We have seen that we can usually take two point sources to make the a.d.v. as 
significant as possible. The question then arises as to  whether this is the best possible 
choice for q in (3.1); the answer to this must be ‘yes’ for the following reason. The 
number n of point sources in the distribution (6.1) was arbitrary, yet the solution 
turned out to  be independent of how many there were. Any realistic type of release 
could necessarily only be made a t  a finite number of discrete points, as considered 
here, whilst some continuous distribution for q could be approximated by an 
arbitrarily large number of point sources, though just two would still yield the best 
a.d.v. We therefore conclude that our procedure will optimize the asymptotic shear 
dispersion of a sudden contaminant release for all but the most unusual uniform 
straight channels. 

The author would like to  acknowledge the financial support of the Science and 
Engineering Research Council. 
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